

Segmented Mirrors for Constellation-X Status and Plans for FY 2000

R. Petre X-Ray Astrophysics Branch (Code 662) NASA / GSFC

The Constellation Segmented Mirror Team:

GSFC X-ray Branch (P. Serlemitsos, W. Zhang, Y. Soong, K.-W. Chan)

GSFC Optics Branch (D. Content, T. Saha, J. Lyons)

GSFC Mechanical Engineering Branch (R. Farley, M. Fenske)

GSFC Mission Integration & Planning Division (J. Hein)

MIT CSR (M. Schattenburg, G. Monelly, C. Chen, O. Mongrard)

RJH Scientific (R. Harms)

SAO HEAD (L. Cohen, H Bergner)

January 21, 2000

Segmented Mirrors for Constellation-X

Goals for remainder of FY 2000

- * Demonstrate geometry-limited resolution for conical reflector pair
 - * Replicate reflectors using glass substrates and ROSI mandrels
 - * X-ray performance test to determine blur contribution of substrate
- * Replicate axially curved surfaces (6 cm mandrel)
 - Demonstrate applicability of approach to Wolter geometry
- Demonstrate performance of Si microcombs in breadboard fixture
 - * Allow more accurate determination of alignment error term
 - Facilitate design of prototype housing
- Production and replication of 0.5 m segments
 - * Produce large glass segments
 - * Use formed Be to demonstrate feasibility of replication

Keys to meeting 15" angular resolution goal

- * Mandrels microscopically smooth, with accurate figure
- * Substrate free standing reflectors with high fidelity to optical design
- * Housings accurately align reflectors introducing minimal distortion

Research supplemented by development of metrology and analysis tools

Mandrels

- Need for accurately figured Wolter mandrels is common to segmented and shell approaches (but segmented approach does not require full shells)
- * MSFC Ni/Al mandrel (0.2 m)
 - demonstrated GSFC can accurately replicate foils from metal mandrel
 - best global figure ever produced on a foil reflector (<12")
 - repolishing has yielded ~3 Å microroughness (twice); will be passivated at GSFC
- Series of 0.2 m Ni/Al mandrels being produced by GSFC Optics Branch
 - cylinder, conical secondary, paraboloid, hyperboloid
 - in house diamond turning, polishing capability should facilitate rapid turnaround
- * Axially curved (Wolter I) 6 cm mandrel
 - to be used for first replication of curved surface (50Å microroughness)
 - delivered from MSFC on 1/20/00; forming mandrel in house
- * Two 0.2 m quartz mandrels (still) on order from ROSI
- * 50 cm mandrels available at MSFC for replication

Substrates

- Thermally formed glass has become our baseline
 - Replication facilitates ability to sacrifice microsurface for 2D figure
 - Forming over <u>convex</u> mandrel
 - Forming process continually being improved; edge effects minimized
 - Have developed accurate (<25µm) edge cutting process
 - Get very accurate substrates <7" figure errors
- * Have established formed Be as viable backup
 - 30 degree P/H pair (50 cm dia) has been delivered and awaits replication; 2nd pair on order
 - Surface accurate to within ~25µm
- Work continues on metallic substrates
 - 300 µm Al alloy shows much better performance than 200µm ASTRO-E material

Housings/Alignment

- * Structure and assembly concept and analysis continue at SAO
 - Flight units contain no precision structures
 - Precision alignment depends exclusively upon Si microcombs
- * Significant progress in establishing Si alignment bar production process
 - Alignment bar production process nearly mature
 - Metrology of prototype alignment bars yields accuracy of =2.5 µm
- * Si alignment bar test housing nearly complete
 - Will allow measurement of alignment accuracy
 - Will allow comparison of Si bar mechanical properties with expectations

Infrastructure/Metrology

- * Developing in-house capability for producing small Al/Ni mandrels
 - Relies on Optics Branch diamond turning lathe
 - Computer controlled polishing being set up
 - Hand polishing has yielded ~3Å rms surfaces (MSFC mandrel)
 - Have set up facility to perform Ni surface passivation (using MSFC recipe)
- Full suite of metrological tools and techniques being developed
 - Surface PSD and figure measurement using Bauer and WYKO
 - Global figure measurement using computer generated holograms
- * Full suite of analysis software
 - Utilizes OSAC plus specially written software

Segmented Mirrors for Constellation-X

Issues / Concerns

* Mandrels

- * Raytheon mandrels are more tha one year late; may not arrive until June
- * Currently do not have mandrel pair (cones or Wolter)
- * Group of mandrels for multiple reflector prototype will be costly (and long lead)

* Housings

- * Accurate adjustable mount for testing reflector pairs not yet available
- * Progress toward demonstration of Si-based alignment scheme has been slower than hoped

* =0.5 m segment fabrication

- * Long lead, high priced items necessary for production (e.g., \$100k oven)
- * Logistical issues associated with attempting replication (at MSFC or GSFC)